

Beyond Automated Tools:

Finding Zero-Day / Custom Vulnerabilities
in Open Source Web Applications

(using OpenDocMan as a case study)

by
Kenneth F. Belva, CISSP

January 24, 2013

Why Research Open Source Software?

 First, it's open source = less potential legal issues

 Not only in review and testing but also presenting to
peers – I can actually show code samples

 Second, it's open source = more of a challenge

 Theory: More eyeballs have seen the code so there
should be less errors

 Reality: Sometimes it's not spaghetti but it can be close!
Certainly inconsistent code in the case of OpenDocMan.

 Third, code exploration lead to finds and dead ends so there is
some interesting things to talk about

Deep Dive: Open Doc Man
Why this software:

First, I found vulnerabilities
• XSS

• SQL Injection

• File Upload XSS

• Admin password reset without authentication

Second, lots of lessons learned here
• Not all issues found are exploitable

• Poorly written code gets protected inadvertently!

• Different Vulnerability Types in One App

Third, “Well, I needed to pick on someone.”

Where to start?
We are looking for “interesting blocks of code”

We want functionality that does stuff and is processed

– Specifically, parameters that lead to SQL statements or to DB
entries (XSS, CSRF, SQL injection)

– Any type of character filtering in the application

– File uploads (upload our own pages)

– Parameters that lead to “decisions” - that is the code acts
differently when it views them (logical flaws)

– Of course, session tokens and anything related to state

– Any authentication component (bypass, spoofing, etc)

We want to find the code gaps

– We are looking for logical flaws

– Unfiltered or partially/incomplete filters

In short: we need to understand how the program works!

Errata: Additional Places to Research
(basically a few items that I couldn't fit on previous slide!)

Standard software looks for variations on single and double
quotes

If you can find something like 0xbf that happens at a lower
level – the db level – many filtering routines at the higher
level will be vulnerable

In business environments: code changes especially where
there was a rush to complete the job or time pressure to
make the change

Code changes to internal apps by third parties: they
sometimes do not understand the standards

While beyond the scope of this presentation, look in areas
where there is mixed technology: i.e., java applets
embedded

A Few Quick Words
on

Filtering & Fuzzing...

A Tale of Two Layers*
The App and the Interpreter

First set of controls are the web app filter

Single and double quotes, left and right brackets, etc.

Second set of “controls” is the underlying app

db query interpreter (MySQL, MSSQL, Oracle)
• Properly formatted queries

• 0xbf2 interpretation is at db level to do conversion

Web server (Apache / IIS)
• Null Byte upload issue on name of file

* This dual layer issue comes into play later in the analysis of OpenDocMan.

And Now A Quick Word on Fuzzing
Why fuzz?

It allows testing of a lot of different parameters and a
large surface area of an application in an effective
and efficient manner

Fuzzing allows for automation

Fuzzing allows for a lot of possibilities – different
combinations of parameters to be submitted –
that an individual tester 1) may accidentally skip
over while testing or 2) much higher volume
than could do manually

In short, I'm a fan!

“Beyond Fuzzing”

If the purpose of fuzzing is to determine program errors
through tons of parameter submissions.....

Going “beyond fuzzing” is a direct or indirect examining
the internal logic of the application

It consists of reading /examining specific functionality of
the code to determine flaws that might exist but cannot
be found through just submitting parameters

We see this often in the case of reverse engineering and
debugging.... it's beyond just fuzzing and often used in
combination with it

Some Web App Techniques

Find filtering routine and run independent test to
determine exactly what comes out the other side

I use fuzzing here. What mistakes will the code make?

Search strings throughout the application for
specific information and routines

*** How is the db query executed? Once we find
this we look for instances when it's not done the
“correct” way! (centralized vs decentralized)

Functionality where we send data and files to app

General Non-Automated
Source Code Analysis Techniques

(and not just for web apps)
Look for specific, weak functions and determine where it's used throughout

application

I coded small grep utility that will help me trace function through different
files (include and exclude) : function tracing, not just parameter tracing!

Rip out and test web app filters directly!

One benefit of Open Source Software is you can take same code and
“sandbox” it in your own environment and test it thoroughly

SQL Injection: Usually will tell you if it's just UNION Select or other injection

XSS: Will tell you what type of encoding will bypass filters...

Look for where files are uploaded to: under path of applications? What are
names of files?

Examine Obscure functionality closely!

If it's not heavily used code then chances are it's not been heavily debugged
for issues

Read actual code that builds and submits query to DB

OpenDocMan v1.2.6.2:
Issues/Code to Explore

Note: For this presentation we will focus on server side issues not
client side ones

Four Zero-days to Explore

From OpenDocMan we will examine the following:

First, a quick review of the UI so we can understand
the app

Second, a demonstration of ripping and testing filters

Third, upload XSS Issue – uploading files and internal
storage (OSVDB: 88443)

Fourth, admin password reset issue (OSVDB: 88441)

Fifth, a “partial” SQL injection: works but we can't get
data out of app (OSVDB: 88442)

Finally, File Access Control Issue – It's all about scope
(OSVDB: 88444)

Ken's Bio
Kenneth F. Belva is the Publisher and Editor-in-Chief of bloginfosec.com. He previously managed an Information Technology Risk

Management Program for a bank whose assets are Billions of dollars. He reported directly to the Senior Vice President and
Deputy General Manager (CFO).

ITsecurity.com recognized him as one of the top information security influencers in 2007.

In 2009, he was published in the Information Security Management Handbook, Sixth Edition, edited by Hal Tipton and Micki Krause.
He also co-authored one of the central chapters in Enterprise Information Security and Privacy, edited by Warren Axelrod,
Jennifer L. Bayuk and Daniel Schutzer.

In addition to his daily corporate responsibilities, he is currently on the board of the New York Metro Chapter of the Information
Systems Security Association (ISSA).

He recently co-authored a paper entitled “Creating Business Through Virtual Trust: How to Gain and Sustain a Competitive
Advantage Using Information Security” with Sam Dekay of The Bank of New York. of security breaches on stock prices.

Mr. Belva frequently presents at information security conferences around the US as well as globally. He writes on day-to-day
information security experiences in a non-essay format at SecurityMaverick.com when time permits and can be followed on
twitter @infosecmaverick

Ken's Contact Info

Website: http://silverbackventuresllc.com

Email: ken@silverbackventuresllc.com

Research: http://securitymaverick.com

Essays: http://www.bloginfosec.com

Twitter: http://twitter.com/infosecmaverick

Stop by and say, 'Hi'!

http://silverbackventuresllc.com/
mailto:ken@silverbackventuresllc.com
http://securitymaverick.com/
http://www.bloginfosec.com/
http://twitter.com/infosecmaverick

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

